

Date Planned : / /	Daily Tutorial Sheet-6	Expected Duration : 45 Min	
Actual Date of Attempt ://	JEE Advanced (Archive)	Exact Duration :	

75. Match each of the compounds given in Column I with the reaction(s) that they can undergo, given in Column II. (2008)

	Column I		Column II	
(A)	Br	(p)	Nucleophilic substitution	
(B)	ОН	(q)	Elimination	
(C)	OH	(r)	Nucleophilic addition	
(D)	Br NO ₂	(s) Esterification with acetic anhydride		
		(t)	Dehydrogenation	

76. Which of the following on heating with aqueous KOH produced acetaldehyde?

(2009)

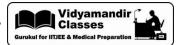
(A)

CH₃COCl

(B) CH₃CH₂Cl

(C) CH_2CICH_2CI (D)

CH $_3$ CHCl $_2$


PARAGRAPH FOR QUESTIONS 77 - 79

A carbonyl compound P, which gives positive iodoform test, undergoes reaction with MeMgBr followed by dehydration to give an olefin Q. Ozonolysis of Q leads to a dicarbonyl compound R, which undergoes intramolecular aldol reaction to give predominantly S. (2009)

$$P \xrightarrow{\text{1. MeMgBr}} Q \xrightarrow{\text{O}_3/\text{Zn-H}_2\text{O}} R \xrightarrow{\text{OH}} S$$
3. H₂SO₄ / heat

77. The structure of the carbonyl compound P, is:

$$CH_3$$
 CH_3 CC_2H_5 CC_2H_5 CC_2H_5 CC_2

78. The structure of the products Q and R, respectively, are :

79. The structure of the product S, is:

$$(A) \qquad (B) \qquad (C) \qquad (D)$$

80. In the scheme given below, the total number of intramolecular aldol condensation products formed from Y is:

$$\frac{1. O_3}{2. Zn, H_2O} Y \frac{1. NaOH(aq)}{2. heat}$$

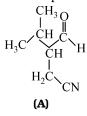
PARAGRAPH FOR QUESTIONS 81 - 83

Two aliphatic aldehydes P and Q react in the presence of aqueous K_2CO_3 to give compound R, which upon treatment with HCN provides compound S. On acidification and heating, S gives the product shown below :

81. The compounds P and Q respectively are :

(A)
$$H_3C$$
 CH_2 H_3C CH_3 H_3C CH_4 H_3C CH_5 $CH_$

(2010)



82. The compound R is:

(2010)

83. The compound S is:

(2010)

PARAGRAPH FOR QUESTIONS 84 - 85

An acyclic hydrocarbon ${\bf P}$, having molecular formula C_6H_{10} gave acetone as the only organic product through the following sequence of reactions, in which ${\bf Q}$ is an intermediate organic compound.

(B)

84. The structure of compound **P** is :

(A)

(2011)

 $\mathsf{H}_3\mathsf{CCH}_2-\mathsf{C} \equiv \mathsf{C} - \mathsf{CH}_2\mathsf{CH}_3$

(C)
$$H_3C$$

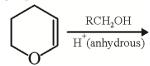
 $H-C-C \equiv C-CH_3$
 H_3C

 $CH_3CH_2CH_2CH_2 - C \equiv CH$

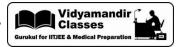
(D)
$$H_3C - C - C \equiv C - H$$

 H_3C

- **85.** The structure of the compound \mathbf{Q} is:
 - (A) $H_3C OH \\ H-C-C-C+CH_2CH_3 \\ H_3C H$


(B) $H_3C - C - C - CH_1$

(c) $H_{3}C \qquad OH \\ H - C - CH_{2}CHCH_{3}$


- (D) CH₃CH₂CH₂C HCH₂CH₃
- **86.** The major product of the following reaction is :

(2011)

(2011)

- (A) A hemiacetal
- (B) An acetal
- (C) An ether
- (**D**) An ester

87. Match the reactions in Column I with appropriate types of steps/reactive intermediate involved in these reactions as given in Column II. **(2011)**

Column I		Column - II	
(A)	H ₃ C O	(p)	Nucleophilic substitution
(B)	CH ₂ CH ₂ CH ₂ Cl CH ₃ MgI CH ₃	(q)	Electrophilic substitution
(C)	O CH ₂ CH ₂ CH ₂ OH H ₂ SO ₄	(r)	Dehydration
(D)	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ OH H ₂ SO ₄ H ₃ C CH ₃	(s)	Nucleophilic addition
		(t)	Carbanion

88. The compound that undergoes decarboxylation most readily under mild condition is:

(2012) CH₂COOH

(A)
$$COOH$$
 $COOH$ COO

,СООН

(D)